
In this section we will examine in detail the common design for all classes that implement
the Collection interface. We will examine the relationship between this interface and the
abstract class that implements it. In the following sections we will study further interfaces,
abstract classes, and finally the concrete classes that implement this interface. Throughout
our study, these features naturally arrange themselves into three vertical levels in a
hierarchy. The following legend explains the three levels and some of the notation used.

 For lists and sets, we will explore the following hierarchy of interfaces,
abstract classes, and concrete classes. Note that some concrete List
classes also implement the RandomAcesss interface; and some concrete
Set classes also implement the SortedSet interface.

These interfaces are implemented by abstract classes (two or three levels, which supply some but
not all of the needed methods) which are extended by concrete classes that inherit some behvaior
from the abstract classes and concretely define all their abstract methods. Recall that concrete
subclasses automatically implement the interfaces that their superclasses implement, and
[abstract]classes can implement more than one interface (but can extend only one superclass);
again, this is a fundamental difference between interfaces and classes.

Difference between Abstract Class and Interface

1. abstract keyword is used to create an abstract class and it can be used with methods
also whereas interface keyword is used to create interface and it can’t be used with
methods.

2. Subclasses use extends keyword to extend an abstract class and they need to provide
implementation of all the declared methods in the abstract class unless the subclass is
also an abstract class whereas subclasses use implements keyword to implement
interfaces and should provide implementation for all the methods declared in the
interface.

3. Abstract classes can have methods with implementation whereas interface provides
absolute abstraction and can’t have any method implementations.

4. Abstract classes can have constructors but interfaces can’t have constructors.
5. Abstract class have all the features of a normal java class except that we can’t

instantiate it. We can use abstract keyword to make a class abstract but interfaces
are a completely different type and can have only public static final constants and
method declarations.

6. Abstract classes methods can have access modifiers as public, private, protected,
static but interface methods are implicitly public and abstract, we can’t use any other
access modifiers with interface methods.

7. A subclass can extend only one abstract class but it can implement multiple interfaces.
8. Abstract classes can extend other class and implement interfaces but interface can

only extend other interfaces.
9. We can run an abstract class if it has main() method but we can’t run an interface

because they can’t have main method implementation.
10. Interfaces are used to define contract for the subclasses whereas abstract class also

define contract but it can provide other methods implementations for subclasses to
use.

Thats all for the difference between interface and abstract classes, now we can move on to
know when should we use Interface over Abstract class and vice versa.

Interface or Abstract Class

Whether to choose between Interface or abstract class for providing contract for subclasses is
a design decision and depends on many factors, let’s see when Interfaces are best choice and
when can we use abstract classes.

1. Java doesn’t support multiple class level inheritance, so every class can extend only
one superclass. But a class can implement multiple interfaces. So most of the times
Interfaces are a good choice for providing base for class hierarchy and contract. Also
coding in terms of interfaces is one of the best practices for coding in java.

2. If there are a lot of methods in the contract, then abstract class is more useful because
we can provide default implementation for some of the methods that are common for
all the subclasses. Also if subclasses don’t need to implement particular method, they
can avoid providing the implementation but in case of interface, the subclass will have
to provide implementation for all the methods even though it’s of no use and
implementation is just empty block.

3. If our base contract keeps on changing then interfaces can cause issues because we
can’t declare additional methods to the interface without changing all the
implementation classes, with abstract class we can provide the default implementation
and only change the implementation classes that are actually going to use the new
methods.

Use Abstract classes and Interface both

Actually most of the times, using Interfaces and abstract classes together is the best approach
for designing a system, for example in JDK java.util.List is an interface that contains a
lot of methods, so there is an abstract class java.util.AbstractList that provides skeletal
implementation for all the methods of List interface so that any subclass can extend this class
and implement only required methods.

We should always start with an interface as base and define methods that every subclasses
should implement and then if there are some methods that only certain subclass should
implement, we can extend the base interface and create a new interface with those methods.
The subclasses will have option to choose between the base interface or the child interface to
implement according to its requirements. If the number of methods grows a lot, its not a bad
idea to provide a skeletal abstract class implementing the child interface and providing
flexibility to the subclasses to choose between interface and abstract class.

Java 8 interface changes

From Java 8 onwards, we can have method implementations in the interfaces. We can create
default as well as static methods in the interfaces and provide implementation for them. This
has bridge the gap between abstract classes and interfaces and now interfaces are the way to
go because we can extend it further by providing default implementations for new methods.
For more details, check out Java 8 interface default static methods.

